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We have measured the power spectrum of the intensity fluctuations of light transmitted by a Fabry-
Pérot interferometer when the input field is the real Gaussian field. The real Gaussian field is a field
characterized by real, random (Gaussian) amplitude fluctuations. The bandwidth of the real Gaussian
field was varied, taking on values less than that of the interferometer, as well as greater. Comparisons of
the measured spectra with calculated spectra are quite satisfactory. Of special interest is a feature in the
spectra centered at the laser-interferometer detuning frequency.

INTRODUCTION

Laser-bandwidth effects on nonlinear-optical processes
have been of growing interest for the past two decades,
but recently systems that are inherently linear in their
response to the electromagnetic wave have shown in-
teresting laser-bandwidth effects as well. These linear
systems become interesting when higher-order correla-
tion properties of the system are involved. An example
of this is the fluctuations (rather than just the average
value) of fluorescence from a linear atomic system in-
teracting with weak laser radiation. Observations [1,2] of
an unusual dependence of fluorescence fluctuations on
laser detuning from resonance with the atoms motivated
several theoretical works [3-5]. Recent measurements
of the variance [6] and of the spectrum [7] of these fluc-
tuations when the atom is excited by a phase diffusing
laser field are in good agreement with theory. In this pa-
per, we discuss measurements of the spectrum of fluctua-
tions of laser light transmitted by a Fabry-Pérot inter-
ferometer when the input field undergoes random ampli-
tude fluctuations. The field is described by the model
known as the real Gaussian field. The Fabry-Pérot inter-
ferometer is a linear system for all intensities used in this
work, and measurements are in excellent agreement with
calculations [8].

EXPERIMENTAL TECHNIQUE

Generation of the real Gaussian field has been dis-
cussed in detail in a previous publication [9]. The field is
of the form ' h '

E()=¢e(t)eF , M
where @y, is a constant frequency. The amplitude &(z) is
a Gaussian random process with an average value of
zero; i.e., it is positive as often as it is negative. This field
is generated by modulating the output of highly stabilized
cw tunable dye laser using an acousto-optic modulator
(AOM). The AOM is driven by a rf signal whose ampli-

4

tude is also a real Gaussian process. Laser bandwidths
from 1 to 14 MHz full width at half maximum (FWHM)
are attainable. The lower limit is determined by the
bandwidth of the stabilized dye laser (~200 kHz). Mea-
surements of the power spectrum of the intensity fluctua-
tions of the real Gaussian field intensity indicate that it
falls off with frequency slightly faster than a Lorentzian.
For all laser bandwidths used in this experiment, the
measured intensity spectrum is about 3 dB below a real
Lorentzian at about 25 MHz, and about 7.5 dB lower at
40 MHz. Three factors contribute to this sub-Lorentzian
shape. First is the response of the AOM. The efficiency
of the AOM is at a maximum for a drive frequency of 200
MHz, and falls off by about 3 dB when the drive signal is
50 MHz to either side of 200 MHz. Second is the spatial
coherence of the beam diffracted by the AOM. When the
AOM drive signal is modulated, the acoustic wave in the
modulator is not uniform across the optical wave front.
This leads to a variation of the amplitude of the real
Gaussian field across the beam. Since the intensity spec-
trum is measured by projecting the entire beam onto a
photodiode, the average intensity is measured, so that the
higher-frequency components of the fluctuations tend to
average out. Both of these processes are discussed in
more detail in Ref. [9]. An additional contribution to the
decrease in the high-frequency components is the fre-
quency response of the detector itself. This is secondary
to the preceding two effects. Approximately 4% of the
incident field intensity can be converted into the real
Gaussian field. Higher diffraction efficiencies or larger

~ bandwidths result in distortion of the signal, such that

e(t) deviates from a Gaussian process. This limit was

~ determined through measurements of the intensity auto-

correlation function, which for the perfect real Gaussian
field with a Lorentzian power spectrum decreases ex-
ponentially from an initial value of three to a long-term
value of 1:

(I(t+7)I(2)) _
Ry(r)=— ol =1 4 2l | 2)
! (I(2))?
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where 2b is the width (FWHM) of the Lorentzian laser
line in angular frequency. In practice, initial values of
R;(0) are measured to be in the range 2.4-2.8. Figure 1
shows a typical measurement of the intensity of the real
Gaussian field and the corresponding intensity autocorre-
lation function computed from a series of these digitized
traces.

The Fabry-Pérot interferometer is of near confocal
geometry with a free spectral range (FSR) of 4 GHz. The
interferometer is a commercial model of an optical scan-
ning spectrum analyzer, from which we have removed
the photodiode detector and modified the mechanism for
adjusting the cavity length. The rear mirror of the inter-
ferometer is mounted on a shaft whose position is adjust-
ed using a 40 pitch screw, and locked in place by tighten-

(2)
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FIG. 1. (a) Typical time trace of the intensity of the real
Gaussian field, and (b) the intensity autocorrelation function
computed from 26 such traces. The bandwidth of the laser was
b /m=9.0 MHz (FWHM) for this figure, leading to a correlation
time of the intensity fluctuations of 1/25=18 nsec. In (b) the
measured autocorrelation (solid line) is shown, as well as the re-
sult of a least-squares fitting procedure to a function of the form
1+[R;(0)—1]exp(—2b7) (dashed curve). The dotted curves in-
dicate the standard deviation of the measured autocorrelation

function, as determined from the scatter of the data.
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ing a collet nut. This allows fine tuning of the cavity
length to within approximately 10 pm of confocal
geometry, as evidenced by measurements of the cavity
transmission peak width, to be discussed later.

Mode matching of the Gaussian laser beam into the
confocal cavity was important in order to make interpre-
tation of the results simpler. Calculations [8] of the
bandwidth effects were carried out for excitation of a sin-
gle transverse and longitudinal mode of the cavity. The
laser beam was focused to the center of the cavity using
an f=22-cm focal length achromatic doublet. The e 2
beam radius before focusing was 0.61 mm. The coupling
[10] into the TEM,,, (n +m even) modes was nearly per-
fect, as confirmed by observing the mode pattern of the
transmitted beam visually, and by measurements of the
intensity of the various transverse modes as the inter-
ferometer was scanned. We estimate that while the
TEM, , cavity mode dominates, a few other higher-order
even modes were also excited, as observed by slight
misadjustment of the cavity from confocal separation. A
cavity length differing from that of a confocal geometry
by as little as 15 pm, for example, would result in a shift
between the even-order modes of about 1 MHz. This
causes the transmission peak to become asymmetric and
somewhat broader when higher-order even modes are
also excited. Our previous claim of the precision of the
adjustment of the cavity length is based on the high de-
gree of symmetry we observed. The peak height corre-
sponding to the odd values of n +m was reduced to less
that & the peak height of the even modes. Overall mode
matching was, we believe, quite satisfactory, although the
effect of a mismatch is not well understood.

In order to measure bandwidth effects, it was necessary
to control the detuning of the laser frequency from reso-
nance with the cavity. This was accomplished using stan-
dard frequency locking techniques, as shown in Fig. 2.
The output of the dye laser was split into two parts, one
of which was modulated to produce the real Gaussian
field, while the second was used for locking the laser fre-
quency to the cavity. We will refer to these beams as the
Gaussian and locking beams, respectively. The center
frequency of the real Gaussian field was shifted by the
AOM by v =200 MHz. The locking beam was frequen-
cy shifted by a second AOM which was driven by a
single-tone frequency modulated signal. The carrier of
this drive signal was varied in frequency v, from 160 to
240 MHz, and was frequency modulated at 10 kHz. The
deviation frequency of the modulation was about 8 MHz.
The polarization of the locking beam was rotated 90°, and
the Gaussian and locking beams were recombined on a
polarizing beamsplitter. The two beams passed through
the interferometer collinearly, and were separated with a
second polarizing beamsplitting cube upon exiting the in-
terferometer. Cross coupling between the two beams was
observed to be negligible. An error signal was generated
from the locking beam photocurrent by demodulation of
the 10-kHz dither in a lock-in amplifier. The lock-in out-
put was integrated, amplified and applied to the frequen-
cy tune control of the dye laser, thus keeping the locking
beam resonant with the interferometer. Since the Gauss-

jan and locking beams differed in frequency by
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FIG. 2. Schematic diagram of the experiment. The output of
the tunable dye laser is split into two beams, one which is ran-
domly amplitude modulated to form the real Gaussian field, the
other of which is single-tone frequency modulated to lock the
laser frequency to the peak of the interferometer transmission
peak. The two beams pass through the interferometer (FPI) col-
linearly, and are separated using a polarizing beam splitter cube
(BS). The licking beam is detected, amplified in a lock-in detec-
tor, and integrated to produce a feedback signal to correct the
frequency of the dye laser. The real Gaussian field intensity is
spectrally analyzed, digitized, and stored on a personal comput-
er (PC).

A=vz;—wv,, the detuning of the Gaussian beam from cav-
ity resonance was also A. This scheme was used for mea-
surement of the cavity finesse as well as for measurements
of laser bandwidth effects.

For the finesse measurements, the noise modulation
electronics were replaced by a single frequency source so
that the “Gaussian” beam was narrow band, and the
average transmitted intensity was recorded as a function
of A. These data are shown on a logarithmic scale in Fig.
3. The circles represent the data points and the solid line
represents the result of a least-squares fit of a Lornetzian
curve to the data, yielding a bandwidth (FWHM) of
about 11.5 MHz. This corresponds to a cavity finesse of
350. The data and the fit agree very nicely for detunings
A greater than — 10 MHz. For larger negative detunings,
the poor agreement is due, we believe, to misalignment of
the locking beam from the axis of the interferometer. In
support of this assertion, we note that the hump on the
low-frequency side of this curve is not evident when sim-
ply scanning the interferometer with the laser frequency
fixed. Misalignment results from changing the carrier
frequency of the locking beam, since the diffraction angle
in the AOM varies with the drive frequency. For drive
frequencies less than 190 MHz (detunings less than —10
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FIG. 3. The average intensity transmitted by the Fabry-Pérot
interferometer. The open circles represent the measured inten-
sities, while the curve represents a fit to the data of a Lorentzian
function. From these data, the width of the transmission peak
is determined to be 11.5 MHz, corresponding to a finesse of 350.

MH?z), it appears that the locking laser excites a different
mode of the cavity sufficiently to cause the system to lock
to the peak of that mode. This shifts the detuning of the
Gaussian beam, such that detuning measurements below
—10 MHz are not accurate. We therefore limited our
measurements to detunings outside this range.

The measurements of the power spectrum of the inten-
sity noise transmitted by the interferometer are carried
out by projecting the transmitted Gaussian beam onto a
silicon photodiode, whose photocurrent is measured on a
rf spectrum analyzer. The spectra are measured in the
range of frequencies from 3 to 39 MHz, for detunings of
the Gaussian laser from resonance of 0-35 MHz. The
laser bandwidth was adjusted to 4.8, 90, or 14.0 MHz
(FWHM). Up to 23 power spectra of the intensity fluc-
tuations were measured in each data set, and two data
sets were recorded for each value of laser bandwidth.
The intensity autocorrelation was checked for each laser
bandwidth as well, yielding initial values of R;(0)=2.55
2.57, and 2.44, respectively. Results will be presented in
the following section, where we show very good agree-
ment with calculated results. ‘

RESULTS

A few examples of the power spectra of the intensity
fluctuations transmitted by the Fabry-Pérot interferome-
ter are shown in Fig. 4. Figures 4(a), 4(b), and 4(c) corre-
spond to laser bandwidths of 4.8, 9.0, and 14.0 MHz, re-
spectively. For each diagram spectra are shown for
laser-resonator detunings A of 0, 10, 20, and 30 MHz,
from top to bottom. Each diagram shows the measured
spectra (rough lines) as well as the calculated spectra
(smooth lines). We will first discuss the calculated
curves, which are of the form
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where Aw, is the cavity width half width at half max-
imum, equal in our case to w(11.5) MHz, and

A=I(I_Reb7’+i8)(1_Re—bT'—i8)|—2 ,
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Note that although the B’s are complex, the power spec-
trum is always real and positive, as required. R is the
reflectance of the interferometer mirrors, and is related to
the cavity width by Aw,=—(1/7')InR, where 7’ is the
cavity round-trip time. & is the cavity round trip phase
shift, equal to w; 7. Equation (3) shows that there are
several contributions to the power spectrum of the inten-
sity fluctuations of the transmitted radiation. We can un- .
derstand these terms qualitatively by considering a simple
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FIG. 4. Power spectra of the intensity fluctuations of the transmitted light. The laser bandwidth (FWHM) in the figure are (a) 4.8
MHz, (b) 9.0 MHz, and (c) 14.0 MHz. The width of the interferometer peak is 11.5 MHz. In each figure the data (rough curves) and
calculations (smooth curves) are shown. The four sets of curves in each figure correspond to a laser-interferometer detuning A of 0,

10, 20, and 30 MHz, from top to bottom.
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picture of the transmitted field. The transmitted-field
spectrum should be expected to exhibit two maxima, one
at the laser frequency, the other at the cavity resonant
frequency. The intensity spectrum, therefore, consists of
peaks with maxima at zero frequency corresponding to
each of these peaks beating against themselves, and also a
peak centered at the detuning frequency resulting from
the two peaks of the field spectrum beating against each
other. These are illustrated in Fig. 5, where we have plot-
ted each term in Eq. (3) for a laser of width 9.0 MHz, a
cavity of width 11.5 MHz, and a detuning frequency of
30 MHz. The first and last terms in Eq. (3) are Lorentzi-
an in shape, and have widths equal to twice the laser

width and twice the cavity width, respectively. These

terms correspond to curves b and ¢ in Fig. 5. The
Lorentzian curve (d) and dispersion-shaped curve (e)
centered at 30 MHz in Fig. 5 are represented in Eq. (3) by
the terms involving Re(B;) and Im(B;), respectively.
These terms represent the cross term between the two
peaks in the transmitted-field spectrum. The disperison-
shaped curve was omitted from the resulis in Ref. [8], due
to an error made in evaluating the Fourier transform of
Eq. (27) and (28) of that work. We also remark here that
Eq. (27) and (28) of Ref. [8], while they are not incorrect,
could have been represented in a much simpler form. See
the Appendix for further discussion.

Several features of the measured data are noteworthy.
The overall shape of the data curves are in very good
agreement with the calculated curves. Within each
figure, the only adjustment made to the calculated curves
is an overall amplification, which on a logrithmic scale of
course corresponds to a vertical displacement. The rela-
tive amplitudes of each of the curves within any of the
figures are not adjusted. The data curves tend to fall off

Components of the Intensity
Power Spectrum

0 10 20 30 40 50 60
Frequency (MHz)

FIG. 5. Components of the calculated spectrum of the inten-
sity fluctuations. The laser width for these curves is 4.5 MHz,
the interferometer width is 11.5 MHz, and the detuning A is 30
MHz. The five curves in the figure represent the various terms
of Eq. (3) in the text. They are (a) the total power spectrum, (b)
the laser bandwidth Lorentzian, (c¢) the cavity bandwidth
Lorentzian, (d) the Lorentzian cross term, and (e) the
dispersion-shaped cross term.
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with frequency slightly faster than the calculated results,
which we attribute to the spatial averaging and the fre-
quency response of the detection system. Figure 6 shows
the frequency response of the random-modulation sys-
tem. This was measured by single-tone modulating the
field amplitude at a frequency v,,, suppressing the car-
rier, removing the interferometer, and measuring the am-
plitude of the current generated by the photodiode at the
frequency 2v,,. Using the frequency response shown in
Fig. 6 to adjust our data actually overcompensates at
high frequencies. That this correction does not apply
perfectly is not surprising since no account is taken of the
effect of the Fabry-Pérot interferometer on the transmis-
sion of a field with imperfect spatial coherence. The spa-
tial coherence of the real Gaussian field was discussed
earlier in the context of the laser intensity band shape.
Nevertheless, the correction factor is of the proper order
to explain the difference between the data and calculated
curves. The data for a laser width of 4.8 MHz shows at
higher frequencies a contribution from the noise level of
the spectrum analyzer.

In Fig. 7 we show the amplitude of the power spectrum
at zero frequency versus detuning for the data. The
curves represent the calculated amplitudes. Each curve
and data set has been normalized to a peak value of 1.
The data points are obtained by extrapolating the mea-
sured power spectra to zero frequency. Agreement is
good for all laser bandwidths used, with the exception of
the 14.0-MHz data for detuning frequencies greater than
20 MHz. In this range the amplitude of the fluctuations
is measured to be less than that calculated, probably due
to the sub-Lorentzian power spectrum of the laser for
high frequencies.

We have found poor agreement when comparing mea-
sured and calculated bandwidths of the intensity spectra.
This is not surprising, however, when one considers the
limited frequency response of the measurements due to
spatial coherence of the field and the detection system.
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FIG. 6. Frequency response of the system: The measured am-
plitude of the sidebands of the laser when single-tone amplitude
modulated with a suppressed carrier.
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FIG. 7. Normalized amplitude of the intensity power spectra
at zero frequency as a function of the laser-interferometer de-
tuning A. The points correspond to measurement for laser
widths of 4.8 MHz (A), 9.0 MHz (0), and 14.0 MHz ( X),
while the curves are derived from calculated power spectra, for
the same laser bandwidth values (dashed, dotted, and solid lines,
respectively).

In conclusion, we have presented results of measure-
ments of the power spectrum of the intensity fluctuations
of light transmitted by a Fabry-Pérot interferometer
when a real Gaussian field is incident upon it. Agreement
of the measured spectra with those calculated previously
is very good, particularly when examining relative ampli-
tudes, the cross term “hump” at the detuning frequency,
and the overall shape of the curves. These measurements
display very nicely the effect of a linear system, the inter-
ferometer, on the higher-order statistical properties of
the field.
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APPENDIX

In this appendix we discuss a simplification of the
derivation and the results of Ref. [8] for the intensity
correlation function of the field transmitted by a Fabry-
Pérot interferometer when a thermal field or a real
Gaussian field is incident upon it. Each field is represent-
ed by Eq. (1), where &(¢) is a real Gaussian variable for
the real Gaussian field, and a complex variable for the
thermal ficld. In the latter case we represent e(¢) as
¢'(¢)+ie"(t), where €'(¢) and £’ (¢) are each real Gaussian
processes, independent of each other but of the same
spectral density. After being transmitted by the inter-

ferometer, the spectral density of €(¢) is modified, but
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since the filter is linear, the amplitude is still a Gaussian
variable. Preservation of the Gaussian properties is
necessary for a subsequent step. The intensity correlation
function R () of the transmitted field is given by

_ ATt +no(1)  (|Eo(t+7)P|Eo(0)*)

RO
70 I TTGIBE

(A1)

The “0” denotes the transmitted field or intensity. We
normalize to the average input intensity in order to retain
information on the magnitude of the fluctuations. In or-
der to evaluate this autocorrelation function for the out-
put intensity fluctuations, we need to relate the transmit-
ted field to the incident field. This is done in the usual
series expansion

Eg(t)=¢(t)e **'=(1—R)[e(t) +Re(t—7')e ~
+R%(t—27')e 7

la)Lt

+...]e ) (A2)
where each term represents one more round-trip of the
field through the cavity than the previous term. We then
write the intensity correlation function in terms of the
transmitted-field amplitude

RX7)={eo(t+mIef(t+r)ey(n)ed (1)) /{|e(n)]*)> . (A3)
Since the amplitude of the transmitted field gy(z) is a
Gaussian variable, this fourth-order correlation function

can be decomposed into a sum of products of second-
order correlation functions,

RAT) =[{]eg(t)|2)2+ | eo(t +7)eg(1) ) |2

+ et +1)eg(2)) 21/ |e(8)]*)* . (A4)
The first term here is the square of the average transmit-
ted intensity. The second term vanishes for the thermal
field since e(¢) is complex and of random phase. There-
fore, when the thermal field is incident on the interferom-
eter, the autocorrelation function is

R () =AI2+|(ef(t et 2/ le()*) ,  (AS5)
and when the real Gaussian field is incident,
RI(?,RGF(T)=R?,th(T)
+ [ {eglt +)eg N2/ {e(0?) . (A6)

Equation (A4) represents a significant simplification over
the procedure outlined in Ref. [8]. Each of the second-
order correlation functions in (A4) involve a product of
two infinite summations of the field given by (A2). This
summation can be simplified by regrouping terms accord-
ing to their order in R, and the input field amplitude
correlation functions evaluated using {e*(z+7)e(1))/
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le(t)|*= % —Zlfll_l ?fltler contractingrtrhéirresulting summa- {80( t+7)ey(2))
tions we find the following expressions: —
8 P (le(l?)
(e§(t+7)eo(1)) e ——— b
(le(n)|?) . . (1—Re?”"®)(1—Re t771)
s e_bT (Re—ba"—iS)M-f-leb'r
=(1=R) (1—Reb7+i8)(]—Re b7 —18) - (1—Re ™47 7%)(1—R2% ~23)
—br+iS\M +1,br b7 —iS\M +1,—b7
(Re )" Te i (Re ) e (A%)
(I_Re_.b.r+,-5)(1_R2) ‘ (l_Rebr'—iB)(l_RZe—ﬂﬁ)
(Reb7Hid)yM+1,—b7 M in these expressions is the integer value of 7/7'. In the
- (1—Re?”+8)(1—R?2) (A7) ysual case of bandwidths much smaller than the FSR of
the cavity, M can be substituted by 7/7', leading to the
and power spectrum in the text, Eq. (3).
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